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1. Projectile Dynamic Model 

This report extends the work of Murphy and Bradley1 and Fansler and Schmidt2 describing jump 
caused by slight configuration asymmetries.  Some of their results are briefly repeated here, for 
completeness, followed by a presentation of a closed-form analytic solution.  The discussion then 
continues with a simple rational approximation, which is then compared to the analytic solution.   

Flight mechanics of most projectile configurations can be captured using a rigid body six degrees 
of freedom dynamic model.3  The degrees of freedom are three position components of the 
projectile mass center and three Euler orientation angles of the body.  Figures 1 and 2 show two 
helpful schematics so that the degrees of freedom are seen to be related according to the 
following equations of motion,4 
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1 Murphy, C. H.; Bradley, J. W.  Jump Due to Aerodynamic Asymmetry of a Missile With Varying Roll Rate; BRL-R-1077; 

U.S. Army Ballistic Research Laboratory:  Aberdeen Proving Ground, MD, 1959. 
2 Fansler, K. S.; Schmidt, E. M.  Trajectory Perturbations of Asymmetric Fin-Stabilized Projectiles Caused by Muzzle Blast.  

Journal of Spacecraft and Rockets 1978, 15 (1), 62–64. 
3 McCoy, R. L.  Modern Exterior Ballistics: the Launch and Flight Dynamics of Symmetric Projectiles; Schiffer Publishing 

Ltd.:  Atglen, PA, 1999.   
4 Murphy, C. H.  Free Flight Motion of Symmetric Missiles; BRL-TR-1216; U.S. Army Ballistic Research Laboratory:  

Aberdeen Proving Ground, MD, 1963. 
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Figure 1.  Projectile position coordinates definition. 

Forces in the body frame that appear in equation 3 contain contributions from weight (W) and air 
loads (A), 
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The weight force resolved into projectile body coordinates is given by equation 6, 
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The air loads are split into two components:  the standard aerodynamic forces and the Magnus 
forces, 
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Figure 2.  Projectile orientation definition. 

Equation 8 gives the standard air loads acting at the aerodynamic center of pressure, 
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where 

 2222
a D)wvu(

8

1q π++ρ=  (9) 

and 

 222 wvuV ++= . (10) 

The Magnus aerodynamic force acts at the Magnus center of pressure,
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Moments about the projectile mass center are due to aerodynamic forces, and moments (A) are 
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The aerodynamic moments caused by standard and Magnus air loads are computed with a cross 
product between the distance vector from the mass center to the force application point and the 
force itself.  An unsteady aerodynamic damping moment is also present, which provides a 
damping source for angular motion, 
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All aerodynamic coefficients and the center of pressures are a function of the Mach number of 
the projectile mass center.  The dynamic model previously described is nonlinear due to both 
three-dimensional rotational kinematics expressions and the presence of complex aerodynamic 
forces.   

2. Reduction to Linear Theory 

Useful performance data regarding trajectory prediction and the stability of projectiles forced 
early ballisticians to investigate mathematical simplifications to the equations of motion.  Over 
time, a set of simplified and solvable, yet accurate, linear differential equations emerged, which 
today is commonly termed “projectile linear theory.”   

The governing equations previously developed are expressed in the body reference frame.  In 
linear theory, the lateral, translational, and rotational velocity components are transformed to a 
nonrolling reference frame.  The nonrolling frame, or so-called fixed plane frame, proceeds with 
only precession and nutation rotations from an inertial reference frame.  Components of linear 

. (11)
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and angular body velocities in the fixed plane frame can be computed from the body frame 
components of the same vector through a single-axis rotational transformation.  For example, the 
body frame components of the projectile mass center velocity are transformed to the fixed plane 
frame by 

 
























−
=













w
v
u

cossin0
sincos0

001

w~
v~
u~

φφ
φφ . (14) 

Note that the 
~

 superscript indicates the vector components relative to the fixed plane reference 
frame.  Projectile linear theory makes a change of variables from station line velocity 
component, u, to total velocity, V, as described in the next two equations: 

 222222 w~v~uwvuV ++=++= , (15) 

and 
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A further change of variable from time, t, to dimensionless arc length, s, is also preferred and 
following Murphy4 gives the dimensionless arc length, 

 dtV
D
1s

t

0
∫= . (17) 

Equations 18 and 19 relate time and arc length derivatives of a given quantityζ .  Dotted terms 
refer to time derivatives, and primed terms denote dimensionless arc length derivatives, 
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Linear theory makes several assumptions regarding the relative size of different quantities to 
further simplify the analysis.  Euler angles are small so sin(θ) θ≈ , 1)cos( ≈θ , ψ≈ψ)sin( , and 

1)cos( ≈ψ , and the aerodynamic angle of attack is small so that Vw~=α  and Vv~=β .  The 
projectile is mass-balanced such that 0III YZXZXY ===  and YZZYYYYZZ IIIII ≡=⇒= .  
Quantities V and φ  are large compared to θ, ψ, q, r, v , and w , such that products of small 
quantities and their derivatives are negligible.  Application of these assumptions results in 
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Aside from the fact that V  appears in some of the previously mentioned coefficients, the 
dynamics are now expressed with linear ordinary differential equations.   

3. Linear Theory Solution 

Linear theory offers physical insight into the flight dynamics because closed-form solutions can 
be readily obtained.4  Because V changes slowly with respect to the other variables, it is thus 
considered constant, 0VV ≈ , when it appears as a coefficient in all dynamic equations except its 
own.  Moreover, pitch attitude of the projectile is regarded as constant in the velocity equation, 
thus decoupling the velocity equation.  The epicyclic motion, equation 28, together with the roll 
dynamics, equation 27, is uncoupled and forms a linear system of equations.  In projectile linear 
theory, the Magnus force in equations 24 and 25 is typically regarded as small so that in further 
manipulation of the equations, all Magnus forces will be dropped.  However, it is important to 
retain Magnus moments due to the fact that a cross product between Magnus force and its 
respective moment arm is not necessarily small.  

The solution to the differential equation 26, for the forward velocity, is 

 ( ) 
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When 00 =θ , the velocity solution reduces to the familiar exponential decay form.4  The roll 
dynamic equation is a nonhomogeneous linear differential equation with the following solution 
for 0θ 0= : 
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Noting that ( ) DVsp φ′=  implies 
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Neglect the product of damping and the product AE since the density ratio is assumed small.  
Defining ( ) 0v iw Vξ ≡ +  enables equation 28 to be reduced to a single differential with the 

following form,4 

 ( ) ( ) ( ) ( )
0ξ E A ξ AE C ξ = – MM + EFF e iEG Vi φ φ+′′ ′− − − + − , (33) 

by assuming p  is small and ignored.
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Rather than solve for the lateral translation and rotational velocity components, via equation 33, 
a more direct way to obtain the effects of asymmetry is to solve the swerve differential 
equations.  The lateral translation and rotational velocity components are contained in the 
attitude differential equations, and the attitudes are contained within the swerve differential 
equations.   

4. Swerve 

Swerving motion along the earth-fixed IJ  and IK  axes results from a combination of the normal 
aerodynamic forces, as the projectile pitches and yaws, plus the forces and moments due to the 
configuration asymmetry.  Differentiating equations 22 and 23, with respect to nondimensional 
arc length and using the definition of ξ  with equation 33, leads to the following expression, 

( ) ( ) ( ) ( ) ( )i

0

AE C iCGy i z A MM CFF e E A Aξ  – Aξ
D V

Bφ φ++
′′ ′′ ′ ′′+ = − − + + − . (34) 

For a stable projectile, the swerve caused by epicyclical vibration decays as the projectile 
progresses downrange and does not affect the long-term lateral motion.  However, the 
assumption that the projectile is configurationally asymmetric causes an integrated effect that 
contributes to the long-term lateral motion of the projectile.  Linear theory shows this center of 
mass motion contains terms that are bounded with arc length s plus terms that are linear with s 
and with the inclusion of gravity the solution of equation 34 will have even higher order 
diverging terms.  These higher order terms are typically denoted as gravity drop.  The linear 
terms are called jump terms, which are caused by initial conditions at the gun muzzle, forces 
caused by asymmetry, and aerodynamic characteristics.  Ignoring gravity and evaluating the 
following limits formally defines aerodynamic jump 

 
J K

s s

y(s) z(s)= Γ , and = Γlim limDs Ds→∞ →∞
. (35) 

The total aerodynamic jump vector Γ  is expressed as the sum of two vectors.  The first vector 
represents the muzzle conditions and the second results from asymmetry subjected to a varying 
roll rate:   
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for which 
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. (37) 
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The quantity Π  is the contribution to the jump vector attributed to the assumed asymmetry of 
the projectile.  The appendix shows that  

 ( )



 ΓΖ−Ζ−

Ζ−
Γ+

Ζ+
−−=Π i,i21;Fi1

i
CEA

FFCMMA
11

, (38) 

where 
11

F  is the confluent hypergeometric5 function.  Apparently, neither Murphy and Bradley1 

nor Fansler and Schmidt2 were aware of equation 38, which makes their limiting and asymptotic 
analysis, 1=Γ  and 11<<−Γ , unnecessary for calculations of jump due to asymmetric 
configurations.   

For constant rolling motion 0=Γ  and for comparison purposes, the following definition 
introduced by Murphy and Bradley1 will be used here, ˆ i ZΠ = − Π , so that ΖΦ−=Φ iˆ  of 
equation (A-6) of the appendix now becomes 
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1
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1 1

ˆ 1 i e d
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−
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= − − − −

∫  

(39)

 

Polar plots of results from equation 39 composed to Murphy and Bradley1 are given in figure 3, 
for Φ̂ , and figure 4 gives the argument Φ̂  from equation 39.  
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Figure 3.  Magnitude of Φ̂  as a function of Ζ . 

                                                 
5 Abramowitz, M.; Stegun, I. A., Eds.  Handbook of Mathematical Functions, Series 55; National Bureau of Standards 

Applied Mathematics:  Dover Publishing Co., 1967. 
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Figure 4.  Argument of Φ̂  as a function of Ζ . 

Successive integration by parts of the last equation shows 
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where  

 
( )
( )( )0 n 0 n 1

i y 1
F and F F F

y 1 1 −

−
′= =

Ζ Γ − +
.  

Hence, in the limit of large, 
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Furthermore, equation 39 can be expanded using a Kummer series giving the following 
expression: 
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The limit of equation 42, ∞→Ζ , is  

 1for   1
11ˆ 432 <Γ
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. (41)

(42) 
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This last result, in light of the general limiting case of equation 41, suggests the Kummer series, 
equation 42, when transformed to a continued fraction, may produce an accurate approximation 
to Φ̂  for all values of Γ .  To continue the investigation, the assumption was made that a 
reasonable approximation has the following representation: 

 )(((( ))))))a71a31a21a11a0ˆ Γ+Γ+Γ+Γ+Γ=Φ . (44) 

After finding the coefficients a0, a1, a2 a7  results in the rational approximation 
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Taking the limit of this expression, for ∞→Ζ , yields Γ1
1Φ̂
−

→ , which indicates equation 45 is 

a reasonable approximation when 1Γ ≠ .  Figure 5 shows some comparisons between the exact 
solution, equation 39, and its rational approximation equation 45 for various values of Γ .  It is 
noteworthy that even for the case where 1Γ = , the comparison shows good agreement for 
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Figure 5.  A comparison of the exact vs. a rational approximation of Φ̂ . 

.  (45) 
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5. Conclusions 

Previous efforts describing jump due to asymmetry did not develop the closed-form solution 
presented here.  All of the analysis is based on projectile linear theory, which leads to an 
expression based on the confluent hypergeometric function 1F1.  This solution is well 
approximated, for the arguments used here, with a simple rational expression obtained from a 
continued fraction expansion of the closed-form solution.  This is a further extension of the 
Murphy and Bradley1 and Fansler and Schmidt2 results (see figure 3) that will prove useful for 
analysis and design purposes.  
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Appendix.  Integral 

Let 0Γ 1 – φ φ∞′ ′= , pΖ Kφ∞′=  and pτ sK= , then equation 32 will be written as 

 ( ) ( )ττ Ζ τ Γ e 1φ − = + −  
. (A-1) 

Then  
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( ) ( )τ

0 0

s
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1lim s – τ e dτ   .                                            (A-2)       
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τ φ
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σ
Φ = ∫ ∫

= ∫
 

Ignoring the limiting process for the moment allows the last equal sign to be written as 
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n s
iΖ – ni Ζ Γ

n 0 0

iΖΓ
s e s – τ e dτ

!n
τ−

=
Φ = ∑ ∫ . (A-3) 

Integrating the last expression and taking the limit ∞→s  causes equation A-3 to become 
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n = 1

iΖΓie
Ζ n – i Ζ n!

−  
Φ = + 

  
∑ , (A-4) 

where after writing the summation as two sums over even and odd values of n  respectively 
becomes 
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Using Taylor Series expansions followed with partial integration given by A and S5,
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( ) ( )
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1 1
iΖiΖ Γ t 1 iΖ –iΖ Γ y

0 0

1 1

i iΓ e t dt Γ e 1 y dy
Ζ Ζ
i Γ F 1;2 iΖ,  iΖΓ .
Ζ 1  iΖ

−− −Φ = + = + −

= + − −
−

∫ ∫
 

(A-6)
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List of Symbols, Abbreviations, and Acronyms 

pa   Integration constant 
x

2
LDD

p I2
SDCρa = . 

va   Integration constant 
m2

SDCρa 0x
v = . 

pb   Integration constant 
x

3
LP

p I4
SDCρb = . 

vb   Integration constant 
v

0
v a

Dθgb = . 

iC   Projectile aerodynamic coefficients. 

D   Projectile characteristic length (diameter). 

FF   Force component caused by asymmetry. 

g   Gravitational constant. 

G   Scaled gravitational constant 0VDgG = . 

Y

X

I
I

  Mass moments of inertia. 

pK   Constant defined as 
( )2

X0 x LP
p

x

ρDS 2C I m C D
K

4m I

+
= − . 

N~
M~
L

  Applied moments about projectile mass center expressed in the no-roll frame. 

MM   Moment component caused by asymmetry. 

m   Projectile mass. 

r~
q~
p

  Angular velocity components vector of projectile in the no-roll frame. 

s  Dummy integration variable. 
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S   Surface area 4DS
2

π= . 

w
v
u

  Mass center velocity components in the body reference frame. 

0V   Forward velocity of projectile. 

w~
v~
u

  Mass center velocity components in the no-roll reference frame. 

x
y
z

 
 
 
 
 

  Position vector of body center of mass in an inertial reference frame. 

Ζ   Substitution variable defined as pΖ Kφ∞′= . 

α   Longitudinal aerodynamic angle of attack. 

β   Lateral aerodynamic angle of attack. 

K

J

Γ
Γ

  
I

I

K
J

 Components of aerodynamic jump. 

Γ   Substitution variable defined as 0Γ 1 – φ φ∞′ ′= . 

Π   Complex aerodynamic jump caused by asymmetry. 

φ
θ
ψ

  Euler roll, pitch, and yaw angles of the projectile. 

0
'φ
φ∞′

  Euler roll rates 0 00

p p

p D V
a D K

φ
φ∞

′
=

′
. 

Bφ   Euler roll angle of configuration asymmetry. 

ρ   Air density.
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